ar X iv : m at h / 98 10 17 2 v 1 [ m at h . D G ] 2 9 O ct 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY

نویسنده

  • A. SUCIU
چکیده

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . D G / 9 81 01 72 v 2 1 9 N ov 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X. In other words, orientable 4-man...

متن کامل

m at h . D G ] 1 9 N ov 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X. In other words, orientable 4-man...

متن کامل

Volume of Riemannian manifolds , geometric inequalities , and homotopy theory

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X. In other words, orientable 4-man...

متن کامل

Pii: S0898-1221(97)00049-7

-In this paper, we establish the equivalence between the generalized nonlinear variational inequalities and the generalized Wiener-Hopf equations. This equivalence is used to suggest and analyze a number of iterative algorithms for solving generalized variational inequalities. We also discuss the convergence analysis of the proposed algorithms. As a special case, we obtain various known results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999